[1] Di Wang, Peng Zhang, Shuai Chen, Ning Zhang, Adaptation to temperature extremes in Chinese agriculture, 1981 to 2010, Journal of Development Economics,166,2024,103196, (共同一作)
[2] 张宁,2022.碳全要素生产率、低碳技术创新和节能减排效率追赶——来自中国火力发电企业的证据.《经济研究》,57(02): 158-174.
[3] 张宁,张维洁,2019.中国用能权交易可以获得经济红利与节能减排的双赢吗?《经济研究》,54(01):165-181.
[4] Zhang, N., Liu, Z., Zheng, X., Xue, J., 2017. Carbon footprint of China’s belt and road.Science, 357(6356): 1106-1107.
[5] Guan, D., Meng, J., David, R.,Zhang, N.*, et al., 2018. The drivers of China’s carbon emission peak.Nature Geoscience, 11: 551-555.
[6] Wiedenhofer, D., Guan, D., Liu, Z., Meng, J.,Zhang, N., Wei, Y., 2017. Unequal household carbon footprints in China.Nature climate change, 7(1): 75-80.
[7] Wei, W., Li, J., …,Zhang, N.*, et al., 2021. Embodied greenhouse gas emissions from building China’s large-scale power transmission infrastructure.Nature Sustainability, 4: 739-747.
[8] Liu, Z., …,Zhang, N., et al., 2020. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic.Nature Communications, 11: 5172.
[9] Peng K, Li J....,Zhang, N. et al., 2023. The global power sector low-carbon transition may enhance sustainable development goal achievement.Nature Communications, 2023.
[10] Li, J., Peng, K., …,Zhang, N.*, et al., 2020. Critical rare-earth elements mismatch global wind-power ambitions.One Earth, 3(1): 116-125.
[11] Li, J., Zhou, S., …,Zhang, N., et al., 2020. China's retrofitting measures in coal-fired power plants bring significant mercury-related health benefits.One Earth, 5(4): 392-402.
[12] Yang, F., …, Zhang, N., Li, J., 2022. Life cycle assessment shows that retrofitting coal-fired power plants with fuel cells will substantially reduce greenhouse gas emissions.One Earth, 5(4): 392-402.
[13] Yin, H., Brauer, M., …, Zhang, N., et al., 2021. Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost.The Lancet Planetary Health, 5(6): e356-e367.
[14] Hou, S., Zhao, X., …,Zhang, N.*, 2022. Spatial analysis connects excess water pollution discharge, industrial production, and consumption at the sectoral level.npj Clean Water, 5: 4.
[15] Yu, Y.,Zhang, N.*, 2022. Environmental regulation and innovation: Evidence from China.Global Environment Change, 76: 102587.
[16] Pan, D.,Chen, H.,Zhang, N.*, Kong, F., 2023. Do livestock environmental regulations reduce water pollution in China?Ecological Economics, 204: 107637.
[17] Zhang, H., Zhang, L.,Zhang, N.*, 2023. When and Under What Conditions Does an Emission Trading Scheme Become Cost Effective?The Energy Journal, 45(2).
[18] Wan, L., Zhang, N.*, 2023. Earning reduction caused by air pollution: Evidence from China.China Economic Review, 79: 101984.
[19] Zhang, N., Zhao, Y., Wang, N., 2022. Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets.Energy Economics, 112: 106143.
[20] Zhang, N., Huang, X., Qi, C., 2022. The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China.Energy Economics, 112: 106147.
[21] Kong, X., …,Zhang, N.*, Li, J., 2022. Steel stocks and flows of global merchant fleets as material base of international trade from 1980 to 2050.Global Environmental Change, 73: 102493.
[22] Du, M., Liu, Y., Wang, B., Lee, M.,Zhang, N.*, 2021. The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach.Energy Economics, 100: 105318.
[23] Yu, Y.,Zhang, N.*, 2021. Low-carbon city pilot and carbon emission efficiency: Quasi-experimental evidence from China.Energy Economics, 96: 105125.
[24] Zhang, N., Ren, R., Zhang, Q., Zhang, T., 2020. Air pollution and tourism development: An interplay.Annals of Tourism Research, 85: 103032.
[25] Mendoze-Tinoco, D., …,Zhang, N., et al., 2020. Flood Footprint Assessment: A Multiregional Case of 2009 Central European Floods.Risk Analysis, 40(8): 1612-1631.
[26] Wei, X.,Zhang, N.*, 2020. The shadow prices of CO2and SO2for Chinese Coal-fired Power Plants: A partial frontier approach.Energy Economics, 85: 104576.
[27] Wang, H., Zhou, P., Xie, B.,Zhang, N., 2019. Assessing drivers of CO2emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis.European Journal of Operational Research, 275(3): 1096-1107.
[28] Wu, T., Zhang, N.*, Gui, L, Wu, W., 2018. Sustainable endogenous growth model of multiple regions: Reconciling OR and economic perspectives.European Journal of Operational Research, 269(1): 218-226.
[29] Pan, D.,Zhang, N.*, 2018. The Role of Agricultural Training on Fertilizer Use Knowledge: A Randomized Controlled Experiment.Ecological Economics, 148: 77-91.
[30] Chen, Z, Wanke, P., Antunes, J.J.M.,Zhang, N., 2017. Chinese airline efficiency under CO2emissions and flight delays: A stochastic network DEA model.Energy Economics, 68: 89-108.
[31] Liu, Y., Ji, Y., Shao, S., Zhong, F.,Zhang, N., Chen, Y., 2017. Scale of Production, Agglomeration and Agricultural Pollutant Treatment: Evidence From a Survey in China.Ecological Economics, 140: 30-45.
[32] Zhang, N., Wang, B., 2015. A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case.Energy Economics, 51: 88-98.
[33] Zhang, N., Zhou, P., Kung, C., 2015.Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis.Renewable and Sustainable Energy Reviews, 41: 584-593.
[34] Zhang, N., Choi, Y., 2014. A note on the evolution of directional distance function and its development in energy and environmental studies 1997-2013.Renewable and Sustainable Energy Reviews, 33: 50-59.
[35] Zhang, N., Choi, Y., 2013. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis.Energy Economics, 40: 549-559.
[36] Lee, M.,Zhang, N., 2012. Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries.Energy Economics, 34(5): 1492-1497.